Abstract - Eur J Emerg Med 2000 Sep;7(3):169-75

Invasive and noninvasive haemodynamic monitoring of acutely ill sepsis and septic shock patients in the emergency department.

Shoemaker WC, Wo CC, Yu S, Farjam F, Thangathurai D. Department of Emergency Medicine, King-Drew Medical Center, Los Angeles, CA, USA.

The objective of this study was to describe early circulatory events of patients presenting to the emergency department (ED) with severe sepsis or septic shock. Invasive and noninvasive monitoring were used to evaluate sequential patterns of both central haemodynamics and peripheral tissue perfusion/oxygenation and to test the hypothesis that increased cardiac output is an early compensation to increased body metabolism. This is a prospective observational study of 45 patients who entered the ED with severe sepsis or septic shock in an urban academic ED. Invasive clinical monitoring was performed using a radial artery catheter and a thermodilution pulmonary artery catheter. Noninvasive monitoring consisted of an improved thoracic electrical bioimpedance device to estimate cardiac output; pulse oximetry for arterial saturation to reflect changes in pulmonary function, and transcutaneous oxygen (PtcO2) and carbon dioxide tensions (PtcCO2) as a reflection of tissue perfusion. Survivors had higher cardiac index, mean arterial pressure (MAP), and better tissue perfusion as measured by PtcO2, oxygen delivery, and oxygen consumption. Oxygen extraction ratio was higher in the nonsurvivors (p < 0.05) and there were episodes of high PtcCO2 values in the nonsurvivors. No significant differences were found in the heart rate, PAOP (wedge pressure) and SaO2 by pulse oximetry between the two groups. It is concluded that ED monitoring septic patients provides a unique opportunity to document early physiologic interactions between cardiac, pulmonary, and tissue perfusion functions in surviving and nonsurviving patients with septic shock. The data is consistent with the concept that increased cardiac output is an early compensatory response to increased body metabolism. Real time haemodynamic monitoring of patients in the ED provides early warning of outcome and may be used to guide therapy.

 
  RETURN TO ABSTRACT INDEX
Company | Products | Patient Monitoring | Clinical Trials | Corporate Relations | Abstract/Case Studies | News | Contact
©2008, All Rights Reserved, NMT, Inc. | ETag™, IQ2™ and NcIQ™ are not yet FDA approved for sale